Overexpression of c-Met increases the tumor invasion of human prostate LNCaP cancer cells in vitro and in vivo

نویسندگان

  • YILI HAN
  • YONG LUO
  • JIAHUI ZHAO
  • MINGCHUAN LI
  • YONGGUANG JIANG
چکیده

c-Met is a transmembrane tyrosine kinase receptor that may be activated by hepatocyte growth factor, an inducer of epithelial-mesenchymal transition (EMT), to regulate the associated downstream gene expression. This process is critical to cell migration in normal and pathological conditions. In the present study, the function of c-Met in the process of EMT was investigated in prostate cancer. Initially, a c-Met stable expression cell line was constructed using EMT- and c-Met-negative LNCaP prostate cancer cells. Following the identification of c-Met in the transfected cells, the changes in EMT, phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase pathway biomarkers were determined by western blot analysis. MTT, soft agar and Transwell assays, and xenograft studies were used to investigate the effects of c-Met on the proliferation, migration and tumorigenicity of LNCaP cells. The results of the present study revealed downregulation of E-cadherin and upregulation of vimentin in LNCaP-Met cells. The results demonstrated that c-Met enhanced proliferation, migration and tumorigenicity capacity when compared with LNCaP and LNCaP-pcDNA3.1 cells. Furthermore, these EMT-like changes were mediated via the PI3K and mitogen-activated protein kinase signaling pathways. The present study clearly demonstrates a crucial function for c-Met in EMT development in prostate cancer. c-Met-targeted treatment may be an effective adjuvant therapy for improving survival rates in patients with prostate cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic Effects of NDRG2 Overexpression and Radiotherapy on Cell Death of Human Prostate LNCaP Cells

Background: Radiation therapy is among the most conventional cancer therapeutic modalities with effective local tumor control. However, due to the development of radio-resistance, tumor recurrence and metastasis often occur following radiation therapy. In recent years, combination of radiotherapy and gene therapy has been suggested to overcome this problem. The aim of the current study was to e...

متن کامل

Supernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer In-vitro and In-vivo

Halophilic archaea are known as the novel producers of natural products and their supernatant metabolites could have cytotoxic effects on cancer cells. In the present study, we screened the anticancer potential of supernatant metabolites from eight native haloarchaeal strains obtained from a culture collection in Iran. Five human cancer cell lines including breast, lung, prostate and also human...

متن کامل

NDRG2 Regulates the Expression of Genes Involved in Epithelial Mesenchymal Transition of Prostate Cancer Cells

Background: Metastasis is the main cause of prostate cancer (PCa) death. The inhibitory effect of N-myc downstream-regulated gene 2 (NDRG2) on the invasiveness properties of PCa cells has been demonstrated previously. However, its underlying mechanisms have not yet been investigated. The present study aimed to investigate the effects of NDRG2 overexpression on the expression of genes involved i...

متن کامل

Supernatant Metabolites from Halophilic Archaea to Reduce Tumorigenesis in Prostate Cancer In-vitro and In-vivo

Halophilic archaea are known as the novel producers of natural products and their supernatant metabolites could have cytotoxic effects on cancer cells. In the present study, we screened the anticancer potential of supernatant metabolites from eight native haloarchaeal strains obtained from a culture collection in Iran. Five human cancer cell lines including breast, lung, prostate and also human...

متن کامل

Radiosensitizing effects of Sestrin2 in PC3 prostate cancer cells

Objective(s): The stress-responsive genes of Sestrin family are recognized as new tumor suppressor genes in breast carcinoma, however, the function of Sestrin family in human prostate cancer is not clear. Ionizing radiation (IR) is known to induce Sestrin gene expression in breast cancer cells. However, the response of Sestrin to IR has not been reported in PC3 prostate cancer cells. Materials ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014